R/AllGenerics.R
, R/sig_gseaplot-methods.R
sig_gseaplot.Rd
Visualize GSEA result with multiple lists of genes by using clusterProfiler
.
sig_gseaplot(
data,
sigs,
group_col,
target_group,
gene_id = "SYMBOL",
slot = "counts",
method = c("dotplot", "gseaplot"),
col = "-log10(p.adjust)",
size = "enrichmentScore",
pvalue_table = FALSE,
digits = 2,
rank_stat = "logFC",
...
)
# S4 method for MArrayLM,vector
sig_gseaplot(
data,
sigs,
group_col,
target_group,
gene_id = "SYMBOL",
slot = "counts",
method = c("dotplot", "gseaplot"),
col = "-log10(p.adjust)",
size = "enrichmentScore",
pvalue_table = FALSE,
digits = 2,
rank_stat = "logFC",
...
)
# S4 method for MArrayLM,list
sig_gseaplot(
data,
sigs,
group_col,
target_group,
gene_id = "SYMBOL",
slot = "counts",
method = c("dotplot", "gseaplot"),
col = "-log10(p.adjust)",
size = "enrichmentScore",
pvalue_table = FALSE,
digits = 2,
rank_stat = "logFC",
...
)
# S4 method for DGEList,ANY
sig_gseaplot(
data,
sigs,
group_col,
target_group,
gene_id = "SYMBOL",
slot = "counts",
method = c("dotplot", "gseaplot"),
col = "-log10(p.adjust)",
size = "enrichmentScore",
pvalue_table = FALSE,
digits = 2,
rank_stat = "logFC",
...
)
# S4 method for ANY,ANY
sig_gseaplot(
data,
sigs,
group_col,
target_group,
gene_id = "SYMBOL",
slot = "counts",
method = c("dotplot", "gseaplot"),
col = "-log10(p.adjust)",
size = "enrichmentScore",
pvalue_table = FALSE,
digits = 2,
rank_stat = "logFC",
...
)
# S4 method for list,ANY
sig_gseaplot(
data,
sigs,
group_col,
target_group,
gene_id = "SYMBOL",
slot = "counts",
method = c("dotplot", "gseaplot"),
col = "-log10(p.adjust)",
size = "enrichmentScore",
pvalue_table = FALSE,
digits = 2,
rank_stat = "logFC",
...
)
expression data, can be matrix, DGEList, eSet, seurat, sce...
a vector of signature (Symbols) or a list of signatures
character or vector, specify the column name to compare in coldata
pattern, specify the group of interest as reference
character, indicate the ID type of rowname of expression data's , could be one of 'ENSEMBL', 'SYMBOL', ... default 'SYMBOL'
character, indicate which slot used as expression, optional
one of "gseaplot" and "dotplot", how to plot GSEA result
column name of clusterProfiler::GSEA()
result, used for dot
col when method = "dotplot"
column name of clusterProfiler::GSEA()
result, used for dot
size when method = "dotplot"
logical, if to add p value table if method = "gseaplot"
num, specify the number of significant digits of pvalue table
character, specify which metric used to rank for GSEA, default "logFC"
params for function get_de_table()
and function enrichplot::gseaplot2()
patchwork object for all comparisons
data("im_data_6", "nk_markers")
sig_gseaplot(
sigs = list(
A = nk_markers$HGNC_Symbol[1:15],
B = nk_markers$HGNC_Symbol[20:40],
C = nk_markers$HGNC_Symbol[60:75]
),
data = im_data_6, group_col = "celltype:ch1",
target_group = "NK", gene_id = "ENSEMBL"
)
#> 'select()' returned 1:many mapping between keys and columns
#> NK-Neutrophils NK-Monocytes NK-B.cells NK-CD4 NK-CD8
#> Down 4009 3946 3143 2698 2153
#> NotSig 1486 2683 4418 4991 6191
#> Up 4926 3792 2860 2732 2077
#> 'select()' returned 1:many mapping between keys and columns
#>
#> preparing geneSet collections...
#> GSEA analysis...
#> Warning: There are ties in the preranked stats (0.88% of the list).
#> The order of those tied genes will be arbitrary, which may produce unexpected results.
#> leading edge analysis...
#> done...
#> preparing geneSet collections...
#> GSEA analysis...
#> Warning: There are ties in the preranked stats (1.05% of the list).
#> The order of those tied genes will be arbitrary, which may produce unexpected results.
#> leading edge analysis...
#> done...
#> preparing geneSet collections...
#> GSEA analysis...
#> Warning: There are ties in the preranked stats (1.35% of the list).
#> The order of those tied genes will be arbitrary, which may produce unexpected results.
#> leading edge analysis...
#> done...
#> preparing geneSet collections...
#> GSEA analysis...
#> Warning: There are ties in the preranked stats (2.2% of the list).
#> The order of those tied genes will be arbitrary, which may produce unexpected results.
#> leading edge analysis...
#> done...
#> preparing geneSet collections...
#> GSEA analysis...
#> Warning: There are ties in the preranked stats (2.31% of the list).
#> The order of those tied genes will be arbitrary, which may produce unexpected results.
#> leading edge analysis...
#> done...