R/subset_sig_by_step.R
plot_mean_var.Rd
plot Mean-variance trend after voom and after final linear fit
plot_mean_var(proc_data, span = 0.5)
processed data returned by process_data()
num, span for lowess()
comparison plot of mean-variance of voom and final model
data("im_data_6")
proc_data <- process_data(
im_data_6,
group_col = "celltype:ch1",
target_group = "NK"
)
#> NK-Neutrophils NK-Monocytes NK-B.cells NK-CD4 NK-CD8
#> Down 4009 3944 3146 2694 2153
#> NotSig 1476 2678 4405 4985 6183
#> Up 4926 3789 2860 2732 2075
plot_mean_var(proc_data)