R/AllGenerics.R
, R/pca_matrix_plot-methods.R
pca_matrix_plot.Rd
Make a matrix plot of PCA with top PCs
pca_matrix_plot(
data,
features = "all",
slot = "counts",
group_by = NULL,
scale = TRUE,
n = 4,
loading = FALSE,
n_loadings = 10,
gene_id = "SYMBOL"
)
# S4 method for matrix
pca_matrix_plot(
data,
features = "all",
group_by = NULL,
scale = TRUE,
n = 4,
loading = FALSE,
n_loadings = 10,
gene_id = "SYMBOL"
)
# S4 method for Matrix
pca_matrix_plot(
data,
features = "all",
group_by = NULL,
scale = TRUE,
n = 4,
loading = FALSE,
n_loadings = 10,
gene_id = "SYMBOL"
)
# S4 method for data.frame
pca_matrix_plot(
data,
features = "all",
group_by = NULL,
scale = TRUE,
n = 4,
loading = FALSE,
n_loadings = 10,
gene_id = "SYMBOL"
)
# S4 method for ExpressionSet
pca_matrix_plot(
data,
features = "all",
group_by = NULL,
scale = TRUE,
n = 4,
loading = FALSE,
n_loadings = 10,
gene_id = "SYMBOL"
)
# S4 method for DGEList
pca_matrix_plot(
data,
features = "all",
slot = "counts",
group_by = NULL,
scale = TRUE,
n = 4,
loading = FALSE,
n_loadings = 10,
gene_id = "SYMBOL"
)
# S4 method for SummarizedExperiment
pca_matrix_plot(
data,
features = "all",
slot = "counts",
group_by = NULL,
scale = TRUE,
n = 4,
loading = FALSE,
n_loadings = 10,
gene_id = "SYMBOL"
)
# S4 method for Seurat
pca_matrix_plot(
data,
features = "all",
slot = "counts",
group_by = NULL,
scale = TRUE,
n = 4,
loading = FALSE,
n_loadings = 10,
gene_id = "SYMBOL"
)
expression data, can be matrix, eSet, seurat...
vector of gene symbols or 'all', specify the genes used for PCA, default 'all'
character, specify the slot name of expression to be used, optional
character, specify the column to be grouped and colored, default NULL
logical, if to scale data for PCA, default TRUE
num, specify top n PCs to plot
logical, if to plot and label loadings of PCA, default 'FALSE'
num, top n loadings to plot; or a vector of gene IDs;
only work when loading = TRUE
character, specify which column of IDs used to calculate TPM, also indicate the ID type of expression data's rowname, could be one of 'ENSEMBL', 'SYMBOL', 'ENTREZ'..., default 'SYMBOL'
matrix plot of PCA
data("im_data_6")
pca_matrix_plot(data = im_data_6, scale = FALSE)