R/AllGenerics.R
, R/get_degs-methods.R
get_degs.Rd
This function uses edgeR and limma to get 'UP' and 'DOWN' DEG
lists, for multiple comparisons, DEGs can be obtained from intersection of
all DEGs or by using product of p value ranks for multiple
comparisons. Filter out low expressed genes and extract DE genes by using
limma::voom and limma::treat, and also create an object proc_data
to
store processed data.
get_degs(
data,
group_col,
target_group,
normalize = TRUE,
feature_selection = c("auto", "rankproduct", "none"),
slot = "counts",
batch = NULL,
...
)
# S4 method for DGEList,character,character
get_degs(
data,
group_col,
target_group,
normalize = TRUE,
feature_selection = c("auto", "rankproduct", "none"),
slot = "counts",
batch = NULL,
...
)
# S4 method for matrix,vector,character
get_degs(
data,
group_col,
target_group,
normalize = TRUE,
feature_selection = c("auto", "rankproduct", "none"),
slot = "counts",
batch = NULL,
...
)
# S4 method for Matrix,vector,character
get_degs(
data,
group_col,
target_group,
normalize = TRUE,
feature_selection = c("auto", "rankproduct", "none"),
slot = "counts",
batch = NULL,
...
)
# S4 method for ExpressionSet,character,character
get_degs(
data,
group_col,
target_group,
normalize = TRUE,
feature_selection = c("auto", "rankproduct", "none"),
slot = "counts",
batch = NULL,
...
)
# S4 method for SummarizedExperiment,character,character
get_degs(
data,
group_col,
target_group,
normalize = TRUE,
feature_selection = c("auto", "rankproduct", "none"),
slot = "counts",
batch = NULL,
...
)
# S4 method for Seurat,character,character
get_degs(
data,
group_col,
target_group,
normalize = TRUE,
feature_selection = c("auto", "rankproduct", "none"),
slot = "counts",
batch = NULL,
...
)
expression object
vector or character, specify the group factor or column name of coldata for DE comparisons
pattern, specify the group of interest, e.g. NK
logical, if the expr in data is raw counts needs to be normalized
one of "auto" (default), "rankproduct" or "none", choose if to use rank product or not to select DEGs from multiple comparisons of DE analysis, 'auto' uses 'rankproduct' but change to 'none' if final genes < 5 for both UP and DOWN
character, specify which slot to use only for DGEList, sce or seurat object, optional, default 'counts'
vector of column name(s) or dataframe, specify the batch effect factor(s), default NULL
params for process_data()
and select_sig()
A list of 'UP', 'DOWN' gene set of all differentially expressed genes, and a DGEList 'proc_data' containing data after process (filtration, normalization and voom fit). Both 'UP' and 'DOWN' are ordered by rank product or 'Rank' variable if keep.top is NULL
data("im_data_6")
DEGs <- get_degs(im_data_6,
group_col = "celltype:ch1",
target_group = "NK", gene_id = "ENSEMBL"
)
#> NK-Neutrophils NK-Monocytes NK-B.cells NK-CD4 NK-CD8
#> Down 4009 3944 3146 2694 2153
#> NotSig 1476 2678 4405 4985 6183
#> Up 4926 3789 2860 2732 2075