labeled inverse average expression: relative frequency
iae_rf(expr, features = NULL, label, multi = TRUE, thres = 0)
a matrix of inverse average expression score
$$\mathbf{IAE} = log(1+\frac{mean(N_{i,j\in D})}{max(mean(N_{i,j\in \hat D}))+ e^{-8}})$$ where \(N_{i,j\in D}\) is the counts of feature \(i\) in cell \(j\) within class \(D\), and \(\hat D\) is the class except \(D\).
data <- matrix(rpois(100, 2), 10, dimnames = list(1:10))
smartid:::iae_rf(data, label = sample(c("A", "B"), 10, replace = TRUE))
#> B B A B A B A
#> 1 0.6418539 0.6418539 0.7472144 0.6418539 0.7472144 0.6418539 0.7472144
#> 2 0.9162907 0.9162907 0.5108256 0.9162907 0.5108256 0.9162907 0.5108256
#> 3 0.5260931 0.5260931 0.8938179 0.5260931 0.8938179 0.5260931 0.8938179
#> 4 1.0414539 1.0414539 0.4353181 1.0414539 0.4353181 1.0414539 0.4353181
#> 5 0.6190392 0.6190392 0.7731899 0.6190392 0.7731899 0.6190392 0.7731899
#> 6 0.8109302 0.8109302 0.5877867 0.8109302 0.5877867 0.8109302 0.5877867
#> 7 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472
#> 8 0.5596158 0.5596158 0.8472979 0.5596158 0.8472979 0.5596158 0.8472979
#> 9 0.3429447 0.3429447 1.2367626 0.3429447 1.2367626 0.3429447 1.2367626
#> 10 0.5877867 0.5877867 0.8109302 0.5877867 0.8109302 0.5877867 0.8109302
#> A A A
#> 1 0.7472144 0.7472144 0.7472144
#> 2 0.5108256 0.5108256 0.5108256
#> 3 0.8938179 0.8938179 0.8938179
#> 4 0.4353181 0.4353181 0.4353181
#> 5 0.7731899 0.7731899 0.7731899
#> 6 0.5877867 0.5877867 0.5877867
#> 7 0.6931472 0.6931472 0.6931472
#> 8 0.8472979 0.8472979 0.8472979
#> 9 1.2367626 1.2367626 1.2367626
#> 10 0.8109302 0.8109302 0.8109302