labeled inverse average expression: IGM
     
    
    iae_igm(expr, features = NULL, label, lambda = 7, thres = 0)
 
    
    Arguments
- expr
- a matrix, features in row and cells in column 
- features
- vector, feature names or indexes to compute 
- label
- vector, group label of each cell 
- lambda
- numeric, hyperparameter for IGM 
- thres
- numeric, cell only counts when expr > threshold, default 0 
 
    
    Value
    a vector of inverse gravity moment score for each feature
     
    
    Details
    $$\mathbf{IGM_i} = log(1+\lambda\frac{max(mean(N_{i,j\in D})_{k})}{\sum_{k}^{K}(mean(N_{i,j\in D})_{k}*r_{k})+e^{-8}})$$
where \(\lambda\) is the hyper parameter, \(N_{i,j\in D}\) is the counts
of feature \(i\) in cell \(j\) within class \(D\), and \(r_k\) is the
rank of \(mean(N_{i,j\in D})\).
     
    
    Examples
    data <- matrix(rpois(100, 2), 10, dimnames = list(1:10))
smartid:::iae_igm(data, label = sample(c("A", "B"), 10, replace = TRUE))
#>        1        2        3        4        5        6        7        8 
#> 1.258461 1.504077 1.413693 1.360092 1.203973 1.283110 1.203973 1.397105 
#>        9       10 
#> 1.572397 1.203973