Last updated: 2023-06-13

Checks: 6 1

Knit directory: SpatialLibrarySizePaper/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230612) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ce1a620. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/

Untracked files:
    Untracked:  analysis/libsize_cosmx.Rmd
    Untracked:  analysis/libsize_stomics.Rmd
    Untracked:  analysis/libsize_xenium.Rmd
    Untracked:  data/ABA_V3_ontology.csv

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


knitr::opts_chunk$set(warning = FALSE, message = FALSE)
# load packages required for analysis
library(tidyverse)
library(patchwork)
library(SpatialExperiment)
library(ExperimentHub)
library(SubcellularSpatialData)
library(car)

Load data

All transcript detection level data is hosted on the ExperimentHub as part of the SubcellularSpatialData package. Data on the ExperimentHub can be queried as below. The SubcellularSpatialData hosts region annotated data from 3 sub-cellular resolution spatial transcriptomics platforms (NanoString CosMx, 10x Xenium, and BGI STOmics).

#identify datasets present in the data package
eh = ExperimentHub()
query(eh, 'SubcellularSpatialData')
ExperimentHub with 3 records
# snapshotDate(): 2023-06-01
# $dataprovider: NanoString, BGI, 10x
# $species: Mus musculus, Homo sapiens
# $rdataclass: data.frame
# additional mcols(): taxonomyid, genome, description,
#   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
#   rdatapath, sourceurl, sourcetype 
# retrieve records with, e.g., 'object[["EH8230"]]' 

           title           
  EH8230 | xenium_mm_brain 
  EH8231 | stomics_mm_brain
  EH8232 | cosmx_hs_nsclc  

Transcript detection data from the package is loaded as follows and contains the x and y coordinates of each detection/spot, gene name, gene count (1 for CosMx and Xenium representing each detection), genetype, region annotations, and other technology specific information.

tx_detections = eh[['EH8230']]
head(tx_detections)
                                     sample_id  cell    gene genetype        x
1 Xenium_V1_FF_Mouse_Brain_MultiSection_1_outs 67490 Bhlhe40     Gene 4843.046
2 Xenium_V1_FF_Mouse_Brain_MultiSection_1_outs 67957   Parm1     Gene 4844.633
3 Xenium_V1_FF_Mouse_Brain_MultiSection_1_outs 67539 Bhlhe40     Gene 4842.943
4 Xenium_V1_FF_Mouse_Brain_MultiSection_1_outs 68003    Lyz2     Gene 4843.941
5 Xenium_V1_FF_Mouse_Brain_MultiSection_1_outs 67344    Dkk3     Gene 4843.163
6 Xenium_V1_FF_Mouse_Brain_MultiSection_1_outs 67957   Parm1     Gene 4845.258
         y counts  region technology   level Level0 Level1 Level2 Level3 Level4
1 6427.730      1 RSPd2/3     Xenium Level11   root   grey     CH    CTX  CTXpl
2 6223.183      1   RSPv5     Xenium Level11   root   grey     CH    CTX  CTXpl
3 6478.310      1 RSPd2/3     Xenium Level11   root   grey     CH    CTX  CTXpl
4 6344.550      1   RSPd5     Xenium Level11   root   grey     CH    CTX  CTXpl
5 6632.112      1   RSPd1     Xenium Level11   root   grey     CH    CTX  CTXpl
6 6227.622      1   RSPd5     Xenium Level11   root   grey     CH    CTX  CTXpl
     Level5 Level6 Level7 Level8 Level9 Level10 Level11 transcript_id
1 Isocortex   <NA>   <NA>    RSP   RSPd    <NA> RSPd2/3   2.81475e+14
2 Isocortex   <NA>   <NA>    RSP   RSPv    <NA>   RSPv5   2.81475e+14
3 Isocortex   <NA>   <NA>    RSP   RSPd    <NA> RSPd2/3   2.81475e+14
4 Isocortex   <NA>   <NA>    RSP   RSPd    <NA>   RSPd5   2.81475e+14
5 Isocortex   <NA>   <NA>    RSP   RSPd    <NA>   RSPd1   2.81475e+14
6 Isocortex   <NA>   <NA>    RSP   RSPd    <NA>   RSPd5   2.81475e+14
  overlaps_nucleus z_location       qv
1                1   19.06887 40.00000
2                0   18.52016 40.00000
3                1   18.50011 13.81358
4                0   15.01615 19.47188
5                0   15.39468 40.00000
6                0   16.95615 40.00000
#total detections per sample
tx_detections |> 
  group_by(sample_id) |> 
  summarise(TotalDetections = sum(counts))
# A tibble: 3 × 2
  sample_id                                    TotalDetections
  <chr>                                                  <dbl>
1 Xenium_V1_FF_Mouse_Brain_MultiSection_1_outs        62744602
2 Xenium_V1_FF_Mouse_Brain_MultiSection_2_outs        58716497
3 Xenium_V1_FF_Mouse_Brain_MultiSection_3_outs        59424126

This workflow analyses the 10x Xenium data. The colour map used by the Allen Brain Atlas (ABA) is used to visualise annotated data points. This is stored in the ABA_V3_ontology.csv file.

#Load ABA v3 ontology colour map
ont_df = read.csv('data/ABA_V3_ontology.csv')
colmap = ont_df$color_hex_triplet
names(colmap) = ont_df$acronym

The Allen Brain Atlas annotates regions of the brain at multiple levels (Level 0 to 11). Each data point is assigned an annotation for each level. The overall annotation of each datapoint is the lowest non-missing level. For example, if a detection has annotations for levels 1-5 and 8-9 but missing annotations for levels 6-7 and 10-11, the detection’s annotation would be the level 9 annotation. The region column stores the lowest non-mission annotation while the level column stores the corresponding annotation level. Sub-structures of the CA region, specifically the CA1, CA2 and CA3, pyramidal layers (CA1sp, CA2sp, and CA3sp respectively) that were missing in the ABA were manually annotated.

#region summaries
tx_detections |> 
  filter(genetype %in% 'Gene') |> 
  group_by(sample_id, region) |> 
  summarise(TotalDetections = sum(counts)) |> 
  mutate(PropDetections = TotalDetections / sum(TotalDetections)) |> 
  arrange(desc(PropDetections)) |> 
  ggplot(
    aes(
      fct_reorder(region, PropDetections, median),
      PropDetections,
      fill = region,
      group = paste(sample_id, region)
    )
  ) +
  geom_bar(stat = 'identity', position = 'dodge') +
  scale_fill_manual(values = colmap) +
  labs(x = 'Region', y = 'Proportion of detections') +
  vissE::bhuvad_theme() +
  theme(legend.position = 'none', axis.text.x = element_blank())

#level summaries
tx_detections |> 
  filter(genetype %in% 'Gene') |> 
  group_by(sample_id, level) |> 
  summarise(TotalDetections = sum(counts)) |> 
  mutate(PropDetections = TotalDetections / sum(TotalDetections)) |> 
  arrange(desc(PropDetections)) |> 
  ggplot(
    aes(
      fct_reorder(level, PropDetections, median),
      PropDetections,
      fill = level,
      group = paste(sample_id, level)
    )
  ) +
  geom_bar(stat = 'identity', position = 'dodge') +
  scale_fill_viridis_d(option = 'G') +
  labs(x = 'Level', y = 'Proportion of detections') +
  vissE::bhuvad_theme() +
  theme(legend.position = 'none')

Summarise detections in bins

Since cell boundary detection is still a work in progress, we bin individual detections in to a hexagonal grid with 200 bins along each axis. The results are saved into a SpatialExperiment object where each column represents a bin and each row a gene.

spe = tx2spe(tx_detections, bin = 'hex', nbins = 200)
spe$ntranscripts = colSums(counts(spe)[rowData(spe)$genetype %in% 'Gene', ])
spe
class: SpatialExperiment 
dim: 541 119844 
metadata(0):
assays(1): counts
rownames(541): Bhlhe40 Parm1 ... BLANK_0433 BLANK_0110
rowData names(2): gene genetype
colnames(119844): Xenium_V1_FF_Mouse_Brain_MultiSection_1_outs_1
  Xenium_V1_FF_Mouse_Brain_MultiSection_1_outs_2 ...
  Xenium_V1_FF_Mouse_Brain_MultiSection_3_outs_37370
  Xenium_V1_FF_Mouse_Brain_MultiSection_3_outs_37371
colData names(24): sample_id bin_id ... Level11 ntranscripts
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):
spatialCoords names(2) : x y
imgData names(1): sample_id

Transcript density reveals tissue architecture

Visualising transcript density using hexbin plots where detections are binned in to a hexagonal grid reveals tissue structure.

hex_counts = as.data.frame(colData(spe)) |> 
  cbind(as.data.frame(spatialCoords(spe)))

#library size
p1 = hex_counts |> 
  ggplot(aes(x, y, colour = ntranscripts / 1000)) +
  geom_point(size = 0.1) +
  scale_colour_viridis_c(option = 'F') +
  facet_wrap(~ sample_id, scales = 'free') +
  labs(x = '', y = '', colour = 'Library size (1000s)') +
  vissE::bhuvad_theme() +
  theme(
    axis.text = element_blank(),
    panel.background = element_rect(fill = '#444444')
  )
#region
p2 = hex_counts |> 
  ggplot(aes(x, y, colour = region)) +
  geom_point(size = 0.1) +
  scale_colour_manual(values = colmap, guide = guide_none()) +
  facet_wrap(~ sample_id, scales = 'free') +
  labs(x = '', y = '', colour = '') +
  vissE::bhuvad_theme() +
  theme(
    axis.text = element_blank(),
    panel.background = element_rect(fill = '#444444')
  )
p1 / p2 + plot_layout(guides = 'collect') & theme(legend.position = 'bottom')

Average number of transcripts per cell vary across regions

We can assess the average transcripts detected per cell (library size) across regions without assigning transcripts to cells.

\(AvgLibrarySize_{region} = \frac{\#transcripts_{region}}{\#cells_{region}}\)

tx_detections |> 
  filter(genetype %in% 'Gene') |> 
  group_by(sample_id, region) |> 
  summarise(LibrarySize = sum(counts) / length(unique(cell))) |> 
  ggplot(
    aes(
      LibrarySize / 1000,
      fct_reorder(region, LibrarySize, mean),
      fill = region
    ),
  ) +
  geom_bar(stat = 'identity') +
  scale_fill_manual(values = colmap, guide = guide_none()) +
  labs(x = 'Region', y = 'Library size per cell (1000s)') +
  facet_wrap(~ sample_id, scales = 'free_x', ncol = 3) +
  vissE::bhuvad_theme()

Library size across space is driven by cellular density and spatial regions

We can determine the factors driving transcript detection across space by assessing their effects using binned data. We expect library sizes to be higher in spatial regions with many cells. Based on the observations in the previous sections, we would also suspect that different tissue regions will produce different numbers of transcripts, despite having similar cellular desity. Visualising this effect using the plot below shows how the primary contributor of transcript detections is the number of cells in the binned region. We also see that there is a region specific effect where the library size shifts up or down depending on the region being assessed.

Grey regions representing fibre tracts of the brain have larger library sizes where more cells are present, however, these library sizes are lower than most other regions of the brain on average. In contrast, the cortex (dark green regions), has much larger library sizes that most other regions and the magnitude of relationship between the number of cells and library sizes (the slope) is much larger (steeper slope).

hex_counts |> 
  ggplot(aes(ncells, ntranscripts / 1000, colour = region)) +
  geom_jitter(width = 0.4, size = 0.3) +
  scale_colour_manual(values = colmap, guide = guide_none()) +
  labs(x = 'Cells per bin', y = 'Detections per bin (1000s)', caption = '*jitter applied for visualisation purposes') +
  facet_wrap(~ sample_id, ncol = 3, scales = 'free') +
  vissE::bhuvad_theme()

Statistical modelling of library sizes reveals a region-specific effect size

Point pattern spatial data can be modelled using an inhomogeneous Poisson point process. A simple approach to model library sizes across space is to bin detections and then model binned counts using a generalised linear models (GLMs) with a Poisson link function. Counts per bin can be modelled as a function of the number of cells, the tissue region and other technology specific covariates such as the field of view. Additionally, if other spatial effects are present, functions of the coordinates can be used to model them. We model the former knowledge driven spatial trends. However, as is evident from some of these analyses, there may be spatial effects around the boundaries of tissues and these can be modelled using the x,y coordinates and their interactions.

#fit models
libsize_models = hex_counts |> 
  filter(!is.na(region), ncells > 0 | ntranscripts > 0) |> 
  group_by(sample_id) |>
  summarise(model = list(glm(ntranscripts ~ 0 + ncells * region, family = poisson)),
            across(everything(), list)) |> 
  mutate(model = unlist(model, recursive = FALSE))

Model diagnostics using residuals

We can visualise the Pearson and standard residuals to assess the model fit.

#visualise residuals
residuals_df = libsize_models |>
  mutate(
    Predicted = lapply(model, predict),
    Residuals = lapply(model, residuals),
    ResidualsPearson = lapply(model, residuals, type = 'pearson'),
  ) |> 
  unnest(!c(sample_id, model))

Spatial residuals

#plot residuals ves fitted values
residuals_df |> 
  ggplot() +
  geom_point(aes(x, y, colour = Residuals), size = 0.1) +
  facet_wrap(~ sample_id, scales = 'free') +
  scico::scale_color_scico(palette = 'bam',
                           oob = scales::squish,
                           limits = c(-50, 50) * 1) +
  labs(title = 'Residuals by location', x = '', y = '') +
  vissE::bhuvad_theme() +
  theme(axis.text = element_blank(), legend.position = 'bottom')

Residuals vs Fitted

#plot residuals ves fitted values
residuals_df |> 
  filter(Predicted > 4) |> 
  ggplot(aes(Predicted, Residuals)) +
  geom_point(aes(colour = region), size = 0.4) +
  geom_hline(yintercept = 0, col = 1, lwd = 0.2) +
  geom_smooth(se = FALSE, col = 2, lwd = 0.5, method = 'loess') +
  facet_wrap(~ sample_id, ncol = 1) +
  scale_colour_manual(values = colmap, guide = guide_none()) +
  labs(
    x = 'log(Predicted library size)',
    y = 'Residuals',
    title = 'Residuals vs fitted plot',
    caption = '*3 outliers removed for visualisation purposes'
  ) +
  vissE::bhuvad_theme()

Scale-location

#plot residuals ves fitted values
residuals_df |> 
  filter(Predicted > 4) |> 
  ggplot(aes(Predicted, sqrt(abs(ResidualsPearson)))) +
  geom_point(aes(colour = region), size = 0.4) +
  geom_smooth(se = FALSE, col = 2, lwd = 0.5, method = 'loess') +
  facet_wrap(~ sample_id, ncol = 1) +
  scale_colour_manual(values = colmap, guide = guide_none()) +
  labs(
    x = 'log(Predicted library size)',
    y = expression(sqrt('|Std. Pearson resid.|')),
    title = 'Scale-location plot',
    caption = '*3 outliers removed for visualisation purposes'
  ) +
  vissE::bhuvad_theme()

Regional residuals

#plot residuals ves fitted values
residuals_df |> 
  ggplot() +
  geom_boxplot(aes(reorder(region, Residuals, FUN = var), Residuals, fill = region)) +
  geom_hline(yintercept = 0, col = 2) +
  facet_wrap(~ sample_id, ncol = 1) +
  scale_fill_manual(values = colmap, guide = guide_none()) +
  labs(title = 'Residuals by region') +
  vissE::bhuvad_theme() +
  labs(x = 'Region') +
  theme(axis.text.x = element_blank())

Analysing the residuals shows that:

  1. The Poisson fit works well as there is little to no over-dispersion with respect to the number of cells (fitted vs residual plot).
  2. There is little to no heteroscedasticity (scale-location plot).
  3. Much of the unexplained variation is attributed to the lower ends of the tisse which were not annotated properly because of tissue distortion.
  4. Variation in residuals is not region-specific.

Region-specific effect sizes contribute to library size differences

Having fit the model, we can analyse the effect size of different regions. The modelling we perform allows each region to have its own linear trend between the number of cells and the total trascripts detected. We can therefore analyse the slope and intercepts of these relationships across regions.

This analysis shows that the slope (rate of increase in transcript density with respect to cell density) is generally higher in the cortex (dark green) than in the fibre tracts of the brain (grays).

coef_df = libsize_models |>
  mutate(Coefficient = lapply(model, coef),
         Region = lapply(Coefficient, names)) |>
  unnest(c(Coefficient, Region)) |>
  select(sample_id, Coefficient, Region) |>
  group_by(sample_id) |> 
  mutate(NCell = Coefficient[Region == 'ncells']) |> 
  ungroup() |> 
  mutate(
    Term = case_when(
      grepl('^region[[:alnum:]/ ]+$', Region) ~ 'CoefRegion',
      grepl('^ncells:region[[:alnum:]/ ]+$', Region) ~ 'CoefInteraction',
      .default = NA_character_
    ),
    Region = gsub('^(ncells:)?region', '', Region)
  ) |> 
  drop_na(Term) |> 
  pivot_wider(names_from = Term, values_from = Coefficient, values_fill = 0) |> 
  mutate(slope = NCell + CoefInteraction, intercept = CoefRegion)

coef_df |> 
  ggplot() +
  geom_jitter(aes(exp(slope), exp(intercept) / 1e3, colour = Region)) +
  scale_colour_manual(values = colmap, guide = guide_none()) +
  facet_wrap(~ sample_id) +
  labs(
    x = 'Fold-change per cell',
    y = 'Average library size (1000s)',
    caption = '* 7 outlier removed for visualisation purposes'
  ) +
  lims(x = c(0.95, 1.17), y = c(0, 3)) +
  vissE::bhuvad_theme()

Validation using ANOVA

We can perform an analysis of variance (ANOVA) analysis on the model to determine the importance of region and the cell density in predicting transcript density. We use a Type II ANOVA test from the car package to do so.

aov_results = libsize_models |> 
  select(sample_id, model) |> 
  mutate(ANOVA = lapply(model, car::Anova, test.statistic = 'F')) |>
  mutate(ANOVASummary = lapply(ANOVA, function(x) as.data.frame(x))) |>
  mutate(Covariate = lapply(ANOVA, function(x) {
    as.matrix(x) |> rownames() |> trimws()
  })) |>
  unnest(c(ANOVASummary, Covariate)) |> 
  filter(!Covariate %in% 'Residuals') |> 
  select(!c(model, ANOVA))

aov_results |> 
  DT::datatable(filter = 'top') |> 
  DT::formatSignif(2:5, digits = 4)

sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /stornext/System/data/apps/R/R-4.3.0/lib64/R/lib/libRblas.so 
LAPACK: /stornext/System/data/apps/R/R-4.3.0/lib64/R/lib/libRlapack.so;  LAPACK version 3.11.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] car_3.1-2                     carData_3.0-5                
 [3] SubcellularSpatialData_0.99.4 ExperimentHub_2.8.0          
 [5] AnnotationHub_3.9.1           BiocFileCache_2.9.0          
 [7] dbplyr_2.3.2                  SpatialExperiment_1.11.0     
 [9] SingleCellExperiment_1.23.0   SummarizedExperiment_1.31.1  
[11] Biobase_2.61.0                GenomicRanges_1.53.1         
[13] GenomeInfoDb_1.37.1           IRanges_2.35.1               
[15] S4Vectors_0.39.1              BiocGenerics_0.47.0          
[17] MatrixGenerics_1.13.0         matrixStats_1.0.0            
[19] patchwork_1.1.2               lubridate_1.9.2              
[21] forcats_1.0.0                 stringr_1.5.0                
[23] dplyr_1.1.2                   purrr_1.0.1                  
[25] readr_2.1.4                   tidyr_1.3.0                  
[27] tibble_3.2.1                  ggplot2_3.4.2                
[29] tidyverse_2.0.0               workflowr_1.7.0              

loaded via a namespace (and not attached):
  [1] rstudioapi_0.14               jsonlite_1.8.5               
  [3] magrittr_2.0.3                magick_2.7.4                 
  [5] farver_2.1.1                  rmarkdown_2.22               
  [7] fs_1.6.2                      zlibbioc_1.47.0              
  [9] vctrs_0.6.2                   memoise_2.0.1                
 [11] DelayedMatrixStats_1.23.0     RCurl_1.98-1.12              
 [13] htmltools_0.5.5               S4Arrays_1.1.4               
 [15] curl_5.0.1                    Rhdf5lib_1.23.0              
 [17] SparseArray_1.1.9             rhdf5_2.45.0                 
 [19] sass_0.4.6                    bslib_0.5.0                  
 [21] htmlwidgets_1.6.2             cachem_1.0.8                 
 [23] igraph_1.4.3                  whisker_0.4.1                
 [25] mime_0.12                     lifecycle_1.0.3              
 [27] pkgconfig_2.0.3               Matrix_1.5-4.1               
 [29] R6_2.5.1                      fastmap_1.1.1                
 [31] GenomeInfoDbData_1.2.10       shiny_1.7.4                  
 [33] digest_0.6.31                 colorspace_2.1-0             
 [35] AnnotationDbi_1.63.1          ps_1.7.5                     
 [37] rprojroot_2.0.3               dqrng_0.3.0                  
 [39] crosstalk_1.2.0               RSQLite_2.3.1                
 [41] beachmat_2.17.6               labeling_0.4.2               
 [43] filelock_1.0.2                fansi_1.0.4                  
 [45] timechange_0.2.0              mgcv_1.8-42                  
 [47] abind_1.4-5                   httr_1.4.6                   
 [49] compiler_4.3.0                vissE_1.9.0                  
 [51] bit64_4.0.5                   withr_2.5.0                  
 [53] BiocParallel_1.35.2           DBI_1.1.3                    
 [55] hexbin_1.28.3                 highr_0.10                   
 [57] HDF5Array_1.29.3              R.utils_2.12.2               
 [59] rappdirs_0.3.3                DelayedArray_0.27.4          
 [61] rjson_0.2.21                  tools_4.3.0                  
 [63] interactiveDisplayBase_1.39.0 httpuv_1.6.11                
 [65] R.oo_1.25.0                   glue_1.6.2                   
 [67] callr_3.7.3                   nlme_3.1-162                 
 [69] rhdf5filters_1.13.2           promises_1.2.0.1             
 [71] grid_4.3.0                    getPass_0.2-2                
 [73] generics_0.1.3                gtable_0.3.3                 
 [75] tzdb_0.4.0                    R.methodsS3_1.8.2            
 [77] hms_1.1.3                     utf8_1.2.3                   
 [79] XVector_0.41.1                BiocVersion_3.18.0           
 [81] pillar_1.9.0                  limma_3.57.2                 
 [83] later_1.3.1                   splines_4.3.0                
 [85] lattice_0.21-8                bit_4.0.5                    
 [87] tidyselect_1.2.0              locfit_1.5-9.8               
 [89] Biostrings_2.69.1             scuttle_1.11.0               
 [91] knitr_1.43                    git2r_0.32.0                 
 [93] edgeR_3.43.3                  xfun_0.39                    
 [95] DropletUtils_1.21.0           DT_0.28                      
 [97] stringi_1.7.12                yaml_2.3.7                   
 [99] evaluate_0.21                 codetools_0.2-19             
[101] BiocManager_1.30.21           cli_3.6.1                    
[103] xtable_1.8-4                  munsell_0.5.0                
[105] processx_3.8.1                jquerylib_0.1.4              
[107] Rcpp_1.0.10                   png_0.1-8                    
[109] parallel_4.3.0                ellipsis_0.3.2               
[111] blob_1.2.4                    sparseMatrixStats_1.13.0     
[113] bitops_1.0-7                  viridisLite_0.4.2            
[115] scales_1.2.1                  crayon_1.5.2                 
[117] scico_1.4.0                   rlang_1.1.1                  
[119] KEGGREST_1.41.0