Last updated: 2023-06-12

Checks: 1 1

Knit directory: SpatialLibrarySizePaper/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ce1a620. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/libsize_cosmx.Rmd
    Untracked:  analysis/libsize_stomics.Rmd
    Untracked:  analysis/libsize_xenium.Rmd
    Untracked:  data/ABA_V3_ontology.csv

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/about.Rmd) and HTML (docs/about.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd ce1a620 bhuva.d 2023-06-12 Start workflowr project.

Library size confounds biology in spatial transcriptomics data

Spatial molecular technologies have revolutionised the study of disease microenvironments by providing spatial context to tissue heterogeneity. Recent spatial technologies are increasing the throughput and spatial resolution of measurements, resulting in larger datasets. The added spatial dimension and volume of measurements poses an analytics challenge that has, in the short-term, been addressed by adopting methods designed for the analysis of single-cell RNA-seq data. Though these methods work well in some cases, not all necessarily translate appropriately to spatial technologies. A common assumption is that total sequencing depth, also known as library size, represents technical variation in single-cell RNA-seq technologies, and this is often normalised out during analysis. Through analysis of several different spatial datasets, we noted that this assumption does not necessarily hold in spatial molecular data. To formally assess this, we explore the relationship between library size and independently annotated spatial regions, across 23 samples from 4 different spatial technologies with varying throughput and spatial resolution. We found that library size confounded biology across all technologies, regardless of the tissue being investigated. Statistical modelling of binned total transcripts shows that tissue region is strongly associated with library size across all technologies, even after accounting for cell density of the bins. Through a benchmarking experiment, we show that normalising out library size leads to sub-optimal spatial domain identification using common graph-based clustering algorithms. On average, better clustering was achieved when library size effects were not normalised out explicitly, especially with data from the newer sub-cellular localised technologies. Taking these results into consideration, we recommend that spatial data should not be specifically corrected for library size prior to analysis unless strongly motivated. We also emphasise that spatial data are different to single-cell RNA-seq and care should be taken when adopting algorithms designed for single cell data.